PRAGYAAN

Power system analysis / Hadi Saadat.

By: Material type: TextTextSeries: McGraw-Hill series in electrical and computer engineeringPublication details: New Delhi : Tata McGraw Hill Education Pvt Ltd, c1999.Description: xix, 697 p. : ill. ; 25 cm. + 1 computer disk (3 1/2 in.)ISBN:
  • 9780070487390 (pbk.)
Subject(s): DDC classification:
  • 621.31SAA 21
LOC classification:
  • TK1001 .S23 1999
Online resources:
Contents:
Contents: PREFACE xv -- 1. THE POWER SYSTEM: AN OVERVIEW 1 -- 1.1 INTRODUCTION 1 -- 1.2 ELECTRIC INDUSTRY STRUCTURE 2 -- 1.3 MODERN POWER SYSTEM 4 -- 1.3.1 GENERATION 4 -- 1.3.2 TRANSMISSION AND SUBTRANSMISSION 6 1.3.3 DISTRIBUTION 6 1.3.4 LOADS 8 1.4 SYSTEM PROTECTION 11 1.5 ENERGY CONTROL CENTER 11 1.6 COMPUTER ANALYSIS 11 2. BASIC PRINCIPLES 14 2.1 INTRODUCTION 14 2.2 POWER IN SINGLE-PHASE AC CIRCUITS 15 2.3 COMPLEX POWER 19 2.4 THE COMPLEX POWER BALANCE 21 2.5 POWER FACTOR CORRECTION 23 2.6 COMPLEX POWER FLOW 26 2.7 BALANCED THREE-PHASE CIRCUITS 30 2.8 Y-CONNECTED LOADS 32 2.9 A-CONNECTED LOADS 34 2.10 A-Y TRANSFORMATION 35 2.11 PER-PHASE ANALYSIS 36 2.12 BALANCED THREE-PHASE POWER 37 3. GENERATOR AND TRANSFORMER MODELS; THE PER-UNIT SYSTEM 48 3.1 INTRODUCTION 48 3.2 SYNCHRONOUS GENERATORS 49 3.2.1 GENERATOR MODEL 49 3.3 STEADY-STATE CHARACTERISTICS-CYLINDRICAL ROTOR 56 3.3.1 POWER FACTOR CONTROL 56 3.3.2 POWER ANGLE CHARACTERISTICS 57 3.4 SALIENT-POLE SYNCHRONOUS GENERATORS 62 3.5 POWER TRANSFORMER 64 3.6 EQUIVALENT CIRCUIT OF A TRANSFORMER 64 3.7 DETERMINATION OF EQUIVALENT CIRCUIT PARAMETERS 68 3.8 TRANSFORMER PERFORMANCE 70 3.9 THREE-PHASE TRANSFORMER CONNECTIONS 74 3.9.1 THE PER-PHASE MODEL OF A THREE-PHASE TRANSFORMER 76 3.10 AUTOTRANSFORMERS 77 3.10.1 AUTOTRANSFORMER MODEL 81 3.11 THREE-WINDING TRANSFORMERS 81 3.11.1 THREE-WINDING TRANSFORMER MODEL 82 3.12 VOLTAGE CONTROL OF TRANSFORMERS 83 3.12.1 TAP CHANGING TRANSFORMERS 83 3.12.2 REGULATING TRANSFORMERS OR BOOSTERS 86 3.13 THE PER-UNIT SYSTEM 88 3.14 CHANGE OF BASE 90 4. TRANSMISSION LINE PARAMETERS 102 4.1 INTRODUCTION 102 4.2 OVERHEAD TRANSMISSION LINES 103 4.3 LINE RESISTANCE 105 4.4 INDUCTANCE OF A SINGLE CONDUCTOR 106 4.4.1 INTERNAL INDUCTANCE 107 4.4.2 INDUCTANCE DUE TO EXTERNAL FLUX LINKAGE 108 4.5 INDUCTANCE OF SINGLE-PHASE LINES 109 4.6 FLUX LINKAGE IN TERMS OF SELF- AND MUTUAL INDUCTANCES 110 4.7 INDUCTANCE OF THREE-PHASE TRANSMISSION LINES 112 4.7.1 SYMMETRICAL SPACING 112 4.7.2 ASYMMETRICAL SPACING 113 4.7.3 TRANSPOSE LINE 114 4.8 INDUCTANCE OF COMPOSITE CONDUCTORS 115 4.8.1 GMR OF BUNDLED CONDUCTORS 118 4.9 INDUCTANCE OF THREE-PHASE DOUBLE-CIRCUIT LINES 119 4.10 LINE CAPACITANCE 120 4.11 CAPACITANCE OF SINGLE-PHASE LINES 121 4.12 POTENTIAL DIFFERENCE IN A MULTICONDUCTOR CONFIGURATION 123 4.13 CAPACITANCE OF THREE-PHASE LINES 124 4.14 EFFECT OF BUNDLING 126 4.15 CAPACITANCE OF THREE-PHASE DOUBLE-CIRCUIT LINES 126 4.16 EFFECT OF EARTH ON THE CAPACITANCE 127 4.17 MAGNETIC FIELD INDUCTION 133 4.18 ELECTROSTATIC INDUCTION 135 4.19 CORONA 135 5. LINE MODEL AND PERFORMANCE 142 5.1 INTRODUCTION 142 5 2 SHORT LINE MODEL 143 5.3 MEDIUM LINE MODEL 147 5.4 LONG LINE MODEL 151 5.5 VOLTAGE AND CURRENT WAVES 156 5.6 SURGE IMPEDANCE LOADING 159 5.7 COMPLEX POWER FLOW THROUGH TRANSMISSION LINES 161 5.8 POWER TRANSMISSION CAPABILITY 163 5.9 LINE COMPENSATION 165 5.9.1 SHUNT REACTORS 165 5.9.2 SHUNT CAPACITOR COMPENSATION 168 5.9.3 SERIES CAPACITOR COMPENSATION 168 5.10 LINE PERFORMANCE PROGRAM 171 6. POWER FLOW ANALYSIS 189 6.1 INTRODUCTION 189 6.2 BUS ADMITTANCE MATRIX 190 6.3 SOLUTION OF NONLINEAR ALGEBRAIC EQUATIONS 195 6.3.1 GAUSS-SEIDEL METHOD 195 6.3.2 NEWTON-RAPHSON METHOD 200 6.4 POWER FLOW SOLUTION 208 6.4.1 POWER FLOW EQUATION 208 6.5 GAUSS-SEIDEL POWER FLOW SOLUTION 209 6.6 LINE FLOWS AND LOSSES 212 6.7 TAP CHANGING TRANSFORMERS 220 6.8 POWER FLOW PROGRAMS 222 6.9 DATA PREPARATION 223 6.10 NEWTON-RAPHSON POWER FLOW SOLUTION 232 6.11 FAST DECOUPLED POWER FLOW SOLUTION 240 7. OPTIMAL DISPATCH OF GENERATION 257 7.1 INTRODUCTION 257 7.2 NONLINEAR FUNCTION OPTIMIZATION 258 7.2.1 CONSTRAINED PARAMETER OPTIMIZATION: EQUALITY CONSTRAINTS 260 7.2.2 CONSTRAINT PARAMETER OPTIMIZATION: INEQUALITY CONSTRAINTS 264 7.3 OPERATING COST OF A THERMAL PLANT 267 7.4 ECONOMIC DISPATCH NEGLECTING LOSSES AND NO GENERATOR LIMITS 268 7.5 ECONOMIC DISPATCH NEGLECTING LOSSES AND INCLUDING GENERATOR LIMITS 276 7.6 ECONOMIC DISPATCH INCLUDING LOSSES 279 7.7 DERIVATION OF LOSS FORMULA 289 8. SYNCHRONOUS MACHINE TRANSIENT ANALYSIS 314 8.1 INTRODUCTION 314 8.2 TRANSIENT PHENOMENA 315 8.3 SYNCHRONOUS MACHINE TRANSIENTS 318 8.3.1 INDUCTANCES OF SALIENT-POLE MACHINES 320 8.4 THE PARK TRANSFORMATION 321 8.5 BALANCED THREE-PHASE SHORT CIRCUIT 325 8.6 UNBALANCED SHORT CIRCUITS 330 8.6.1 LINE-TO-LINE SHORT CIRCUIT 330 8.6.2 LINE-TO-GROUND SHORT CIRCUIT 333 8.7 SIMPLIFIED MODELS OF SYNCHRONOUS MACHINES FOR TRANSIENT ANALYSES 335 8.8 DC COMPONENTS OF STATOR CURRENTS 340 8.9 DETERMINATION OF TRANSIENT CONSTANTS 342 8.10 EFFECT OF LOAD CURRENT 347 9. BALANCED FAULT 353 9.1 INTRODUCTION 353 9.2 BALANCED THREE-PHASE FAULT 354 9.3 SHORT-CIRCUIT CAPACITY (SCC) 362 9.4 SYSTEMATIC FAULT ANALYSIS USING BUS IMPEDANCE MATRIX 363 9.5 ALGORITHM FOR FORMATION OF THE BUS IMPEDANCE MATRIX 369 9.6 ZBUILD AND SYMFAULT PROGRAMS 381 10. SYMMETRICAL COMPONENTS AND UNBALANCED FAULT 399 10.1 INTRODUCTION 399 10.2 FUNDAMENTALS OF SYMMETRICAL COMPONENTS 400 10.3 SEQUENCE IMPEDANCES 406 10.3.1 SEQUENCE IMPEDANCES OF Y-CONNECTED LOADS 407 10.3.2 SEQUENCE IMPEDANCES OF TRANSMISSION LINES 409 10.3.3 SEQUENCE IMPEDANCES OF SYNCHRONOUS MACHINE 410 10.3.4 SEQUENCE IMPEDANCES OF TRANSFORMER 411 10.4 SEQUENCE NETWORKS OF A LOADED GENERATOR 418 10.5 SINGLE LINE-TO-GROUND FAULT 421 10.6 LINE-TO-LINE FAULT 423 10.7 DOUBLE LINE-TO-GROUND FAULT 425 10.8 UNBALANCED FAULT ANALYSIS USING BUS IMPEDANCE MATRDC 432 10.8.1 SINGLE LINE-TO-GROUND FAULT USING 432 10.8.2 LINE-TO-LINE FAULT USING Z^ 433 10.8.3 DOUBLE LINE-TO-GROUND FAULT USING 434 10.8.4 BUS VOLTAGES AND LINE CURRENTS DURING FAULT 434 10.9 UNBALANCED FAULT PROGRAMS 442 11. STABILITY 460 11.1 INTRODUCTION 460 11.2 SWING EQUATION 461 11.3 SYNCHRONOUS MACHINE MODELS FOR STABILITY STUDIES 464 11.3.1 SYNCHRONOUS MACHINE MODEL INCLUDING SALIENCY 467 11.4 STEADY-STATE STABILITY -SMALL DISTURBANCES 471 11.5 TRANSIENT STABILITY -EQUAL-AREA CRITERION 486 11.5.1 APPLICATION TO SUDDEN INCREASE IN POWER INPUT 488 11.6 APPLICATION TO THREE-PHASE FAULT 492 11.7 NUMERICAL SOLUTION OF NONLINEAR EQUATION 501 11.8 NUMERICAL SOLUTION OF THE SWING EQUATION 504 11.9 MULTIMACHINE SYSTEMS 511 11.1 OMULTIMACHINE TRANSIENT STABILITY 514 12. POWER SYSTEM CONTROL 527 12.1 INTRODUCTION 527 12.2 BASIC GENERATOR CONTROL LOOPS 528 12.3 LOAD FREQUENCY CONTROL 528 12.3.1 GENERATOR MODEL 529 12.3.2 LOAD MODEL 530 12.3.3 PRIME MOVER MODEL 531 12.3.4 GOVERNOR MODEL 532 12.4 AUTOMATIC GENERATION CONTROL 542 12.4.1 AGC IN A SINGLE AREA SYSTEM 542 12.4.2 AGC IN THE MULTIAREA SYSTEM 545 12.4.3 TIE-LINE BIAS CONTROL 549 12.5 AGC WITH OPTIMAL DISPATCH OF GENERATION 554 12.6 REACTIVE POWER AND VOLTAGE CONTROL 555 12.6.1 AMPLIFIER MODEL 555 12.6.2 EXCITER MODEL 556 12.6.3 GENERATOR MODEL 557 12.6.4 SENSOR MODEL 557 12.6.5 EXCITATION SYSTEM STABILIZER - RATE FEEDBACK 562 12.6.6 EXCITATION SYSTEM STABILIZER - PID CONTROLLER 564 12.7 AGC INCLUDING EXCITATION SYSTEM 566 12.8 INTRODUCTORY MODERN CONTROL APPLICATION 567 12.8.1 POLE-PLACEMENT DESIGN 569 12.8.2 OPTIMAL CONTROL DESIGN 576 APPENDIXES: A.
INTRODUCTION TO MATLAB 586 A.l INSTALLING THE TEXT TOOLBOX 587 A.2 RUNNING MATLAB 587 A.3 VARIABLES 589 A.4 OUTPUT FORMAT 590 A.5 CHARACTER STRING 592 A.6 VECTOR OPERATIONS 593 A.7 ELEMENTARY MATRIX OPERATIONS 596 A.7.1 UTILITY MATRICES 1 599 A.7.2 EIGENVALUES 599 A.8 COMPLEX NUMBERS 599 A.9 POLYNOMIAL ROOTS AND CHARACTERISTIC POLYNOMIAL 601 A.9.1 PRODUCT AND DIVISION OF POLYNOMIALS 603 A.9.2 POLYNOMIAL CURVE FITTING 603 A.9.3 POLYNOMIAL EVALUATION 604 A.9.4 PARTIAL-FRACTION EXPANSION 604 A.10 GRAPHICS 605 A.l1 GRAPHICS HARD COPY 607 A.12 THREE-DIMENSIONAL PLOTS 613 A.13 HANDLE GRAPHICS 614 A.14 LOOPS AND LOGICAL STATEMENTS 614 A.15 SOLUTION OF DIFFERENTIAL EQUATIONS 615 A.16 NONLINEAR SYSTEMS 620 A.17 SIMULATION DIAGRAM 622 A.18 INTRODUCTION TO SIMULINK 623 A.18.1 SIMULATION PARAMETERS AND SOLVER 625 A.18.2 THE SIMULATION PARAMETERS DIALOG BOX 626 A.18.3 BLOCK DIAGRAM CONSTRUCTION 626 A.18.4 USING THE TO WORKSPACE BLOCK 633 A.18.5 LINEAR STATE-SPACE MODEL FROM SIMULINK DIAGRAM 634 A.18.6 SUBSYSTEMS AND MASKING 636 B REVIEW OF FEEDBACK CONTROL SYSTEMS 638 B.l THE CONTROL PROBLEM 638 B.2 STABILITY 639 B.2.1 THE ROUTH-HURWITZ STABILITY CRITERION 640 B.2.2 ROOT-LOCUS METHOD 641 B.3 STEADY-STATE ERROR 642 B.4 STEP RESPONSE 644 B.5 ROOT-LOCUS DESIGN 645 B.5.1 GAIN FACTOR COMPENSATION OR P CONTROLLER 646 B.5.2 PHASE-LEAD DESIGN 647 B.5.3 PHASE-LAG DESIGN 648 B.5.4 PID DESIGN 649 B.5.5 PD CONTROLLER 649 B.5.6 PI CONTROLLER 650 B.5.7 PID CONTROLLER 650 B.6 FREQUENCY RESPONSE 657 B.6.1 BODE PLOT 657 B.6.2 POLAR PLOT 658 B.6.3 RELATIVE STABILITY 658 B.6.4 GAIN AND PHASE MARGINS 659 B.6.5 NYQUIST STABILITY CRITERION 660 B.6.6 SIMPLIFIED NYQUIST CRITERION 660 B.6.7 CLOSED-LOOP FREQUENCY RESPONSE 661 B.6.8 FREQUENCY RESPONSE DESIGN 662 C. POWER SYSTEM TOOLBOX 665 BIBLIOGRAPHY 671 ANSWERS TO PROBLEMS 678 INDEX 691.
Tags from this library: No tags from this library for this title.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Books IITHLIBRARY Available

Includes bibliographical references (p. 671-677) and index.

Contents: PREFACE xv -- 1. THE POWER SYSTEM: AN OVERVIEW 1 -- 1.1 INTRODUCTION 1 -- 1.2 ELECTRIC INDUSTRY STRUCTURE 2 -- 1.3 MODERN POWER SYSTEM 4 -- 1.3.1 GENERATION 4 -- 1.3.2 TRANSMISSION AND SUBTRANSMISSION 6 1.3.3 DISTRIBUTION 6 1.3.4 LOADS 8 1.4 SYSTEM PROTECTION 11 1.5 ENERGY CONTROL CENTER 11 1.6 COMPUTER ANALYSIS 11 2. BASIC PRINCIPLES 14 2.1 INTRODUCTION 14 2.2 POWER IN SINGLE-PHASE AC CIRCUITS 15 2.3 COMPLEX POWER 19 2.4 THE COMPLEX POWER BALANCE 21 2.5 POWER FACTOR CORRECTION 23 2.6 COMPLEX POWER FLOW 26 2.7 BALANCED THREE-PHASE CIRCUITS 30 2.8 Y-CONNECTED LOADS 32 2.9 A-CONNECTED LOADS 34 2.10 A-Y TRANSFORMATION 35 2.11 PER-PHASE ANALYSIS 36 2.12 BALANCED THREE-PHASE POWER 37 3. GENERATOR AND TRANSFORMER MODELS; THE PER-UNIT SYSTEM 48 3.1 INTRODUCTION 48 3.2 SYNCHRONOUS GENERATORS 49 3.2.1 GENERATOR MODEL 49 3.3 STEADY-STATE CHARACTERISTICS-CYLINDRICAL ROTOR 56 3.3.1 POWER FACTOR CONTROL 56 3.3.2 POWER ANGLE CHARACTERISTICS 57 3.4 SALIENT-POLE SYNCHRONOUS GENERATORS 62 3.5 POWER TRANSFORMER 64 3.6 EQUIVALENT CIRCUIT OF A TRANSFORMER 64 3.7 DETERMINATION OF EQUIVALENT CIRCUIT PARAMETERS 68 3.8 TRANSFORMER PERFORMANCE 70 3.9 THREE-PHASE TRANSFORMER CONNECTIONS 74 3.9.1 THE PER-PHASE MODEL OF A THREE-PHASE TRANSFORMER 76 3.10 AUTOTRANSFORMERS 77 3.10.1 AUTOTRANSFORMER MODEL 81 3.11 THREE-WINDING TRANSFORMERS 81 3.11.1 THREE-WINDING TRANSFORMER MODEL 82 3.12 VOLTAGE CONTROL OF TRANSFORMERS 83 3.12.1 TAP CHANGING TRANSFORMERS 83 3.12.2 REGULATING TRANSFORMERS OR BOOSTERS 86 3.13 THE PER-UNIT SYSTEM 88 3.14 CHANGE OF BASE 90 4. TRANSMISSION LINE PARAMETERS 102 4.1 INTRODUCTION 102 4.2 OVERHEAD TRANSMISSION LINES 103 4.3 LINE RESISTANCE 105 4.4 INDUCTANCE OF A SINGLE CONDUCTOR 106 4.4.1 INTERNAL INDUCTANCE 107 4.4.2 INDUCTANCE DUE TO EXTERNAL FLUX LINKAGE 108 4.5 INDUCTANCE OF SINGLE-PHASE LINES 109 4.6 FLUX LINKAGE IN TERMS OF SELF- AND MUTUAL INDUCTANCES 110 4.7 INDUCTANCE OF THREE-PHASE TRANSMISSION LINES 112 4.7.1 SYMMETRICAL SPACING 112 4.7.2 ASYMMETRICAL SPACING 113 4.7.3 TRANSPOSE LINE 114 4.8 INDUCTANCE OF COMPOSITE CONDUCTORS 115 4.8.1 GMR OF BUNDLED CONDUCTORS 118 4.9 INDUCTANCE OF THREE-PHASE DOUBLE-CIRCUIT LINES 119 4.10 LINE CAPACITANCE 120 4.11 CAPACITANCE OF SINGLE-PHASE LINES 121 4.12 POTENTIAL DIFFERENCE IN A MULTICONDUCTOR CONFIGURATION 123 4.13 CAPACITANCE OF THREE-PHASE LINES 124 4.14 EFFECT OF BUNDLING 126 4.15 CAPACITANCE OF THREE-PHASE DOUBLE-CIRCUIT LINES 126 4.16 EFFECT OF EARTH ON THE CAPACITANCE 127 4.17 MAGNETIC FIELD INDUCTION 133 4.18 ELECTROSTATIC INDUCTION 135 4.19 CORONA 135 5. LINE MODEL AND PERFORMANCE 142 5.1 INTRODUCTION 142 5 2 SHORT LINE MODEL 143 5.3 MEDIUM LINE MODEL 147 5.4 LONG LINE MODEL 151 5.5 VOLTAGE AND CURRENT WAVES 156 5.6 SURGE IMPEDANCE LOADING 159 5.7 COMPLEX POWER FLOW THROUGH TRANSMISSION LINES 161 5.8 POWER TRANSMISSION CAPABILITY 163 5.9 LINE COMPENSATION 165 5.9.1 SHUNT REACTORS 165 5.9.2 SHUNT CAPACITOR COMPENSATION 168 5.9.3 SERIES CAPACITOR COMPENSATION 168 5.10 LINE PERFORMANCE PROGRAM 171 6. POWER FLOW ANALYSIS 189 6.1 INTRODUCTION 189 6.2 BUS ADMITTANCE MATRIX 190 6.3 SOLUTION OF NONLINEAR ALGEBRAIC EQUATIONS 195 6.3.1 GAUSS-SEIDEL METHOD 195 6.3.2 NEWTON-RAPHSON METHOD 200 6.4 POWER FLOW SOLUTION 208 6.4.1 POWER FLOW EQUATION 208 6.5 GAUSS-SEIDEL POWER FLOW SOLUTION 209 6.6 LINE FLOWS AND LOSSES 212 6.7 TAP CHANGING TRANSFORMERS 220 6.8 POWER FLOW PROGRAMS 222 6.9 DATA PREPARATION 223 6.10 NEWTON-RAPHSON POWER FLOW SOLUTION 232 6.11 FAST DECOUPLED POWER FLOW SOLUTION 240 7. OPTIMAL DISPATCH OF GENERATION 257 7.1 INTRODUCTION 257 7.2 NONLINEAR FUNCTION OPTIMIZATION 258 7.2.1 CONSTRAINED PARAMETER OPTIMIZATION: EQUALITY CONSTRAINTS 260 7.2.2 CONSTRAINT PARAMETER OPTIMIZATION: INEQUALITY CONSTRAINTS 264 7.3 OPERATING COST OF A THERMAL PLANT 267 7.4 ECONOMIC DISPATCH NEGLECTING LOSSES AND NO GENERATOR LIMITS 268 7.5 ECONOMIC DISPATCH NEGLECTING LOSSES AND INCLUDING GENERATOR LIMITS 276 7.6 ECONOMIC DISPATCH INCLUDING LOSSES 279 7.7 DERIVATION OF LOSS FORMULA 289 8. SYNCHRONOUS MACHINE TRANSIENT ANALYSIS 314 8.1 INTRODUCTION 314 8.2 TRANSIENT PHENOMENA 315 8.3 SYNCHRONOUS MACHINE TRANSIENTS 318 8.3.1 INDUCTANCES OF SALIENT-POLE MACHINES 320 8.4 THE PARK TRANSFORMATION 321 8.5 BALANCED THREE-PHASE SHORT CIRCUIT 325 8.6 UNBALANCED SHORT CIRCUITS 330 8.6.1 LINE-TO-LINE SHORT CIRCUIT 330 8.6.2 LINE-TO-GROUND SHORT CIRCUIT 333 8.7 SIMPLIFIED MODELS OF SYNCHRONOUS MACHINES FOR TRANSIENT ANALYSES 335 8.8 DC COMPONENTS OF STATOR CURRENTS 340 8.9 DETERMINATION OF TRANSIENT CONSTANTS 342 8.10 EFFECT OF LOAD CURRENT 347 9. BALANCED FAULT 353 9.1 INTRODUCTION 353 9.2 BALANCED THREE-PHASE FAULT 354 9.3 SHORT-CIRCUIT CAPACITY (SCC) 362 9.4 SYSTEMATIC FAULT ANALYSIS USING BUS IMPEDANCE MATRIX 363 9.5 ALGORITHM FOR FORMATION OF THE BUS IMPEDANCE MATRIX 369 9.6 ZBUILD AND SYMFAULT PROGRAMS 381 10. SYMMETRICAL COMPONENTS AND UNBALANCED FAULT 399 10.1 INTRODUCTION 399 10.2 FUNDAMENTALS OF SYMMETRICAL COMPONENTS 400 10.3 SEQUENCE IMPEDANCES 406 10.3.1 SEQUENCE IMPEDANCES OF Y-CONNECTED LOADS 407 10.3.2 SEQUENCE IMPEDANCES OF TRANSMISSION LINES 409 10.3.3 SEQUENCE IMPEDANCES OF SYNCHRONOUS MACHINE 410 10.3.4 SEQUENCE IMPEDANCES OF TRANSFORMER 411 10.4 SEQUENCE NETWORKS OF A LOADED GENERATOR 418 10.5 SINGLE LINE-TO-GROUND FAULT 421 10.6 LINE-TO-LINE FAULT 423 10.7 DOUBLE LINE-TO-GROUND FAULT 425 10.8 UNBALANCED FAULT ANALYSIS USING BUS IMPEDANCE MATRDC 432 10.8.1 SINGLE LINE-TO-GROUND FAULT USING 432 10.8.2 LINE-TO-LINE FAULT USING Z^ 433 10.8.3 DOUBLE LINE-TO-GROUND FAULT USING 434 10.8.4 BUS VOLTAGES AND LINE CURRENTS DURING FAULT 434 10.9 UNBALANCED FAULT PROGRAMS 442 11. STABILITY 460 11.1 INTRODUCTION 460 11.2 SWING EQUATION 461 11.3 SYNCHRONOUS MACHINE MODELS FOR STABILITY STUDIES 464 11.3.1 SYNCHRONOUS MACHINE MODEL INCLUDING SALIENCY 467 11.4 STEADY-STATE STABILITY -SMALL DISTURBANCES 471 11.5 TRANSIENT STABILITY -EQUAL-AREA CRITERION 486 11.5.1 APPLICATION TO SUDDEN INCREASE IN POWER INPUT 488 11.6 APPLICATION TO THREE-PHASE FAULT 492 11.7 NUMERICAL SOLUTION OF NONLINEAR EQUATION 501 11.8 NUMERICAL SOLUTION OF THE SWING EQUATION 504 11.9 MULTIMACHINE SYSTEMS 511 11.1 OMULTIMACHINE TRANSIENT STABILITY 514 12. POWER SYSTEM CONTROL 527 12.1 INTRODUCTION 527 12.2 BASIC GENERATOR CONTROL LOOPS 528 12.3 LOAD FREQUENCY CONTROL 528 12.3.1 GENERATOR MODEL 529 12.3.2 LOAD MODEL 530 12.3.3 PRIME MOVER MODEL 531 12.3.4 GOVERNOR MODEL 532 12.4 AUTOMATIC GENERATION CONTROL 542 12.4.1 AGC IN A SINGLE AREA SYSTEM 542 12.4.2 AGC IN THE MULTIAREA SYSTEM 545 12.4.3 TIE-LINE BIAS CONTROL 549 12.5 AGC WITH OPTIMAL DISPATCH OF GENERATION 554 12.6 REACTIVE POWER AND VOLTAGE CONTROL 555 12.6.1 AMPLIFIER MODEL 555 12.6.2 EXCITER MODEL 556 12.6.3 GENERATOR MODEL 557 12.6.4 SENSOR MODEL 557 12.6.5 EXCITATION SYSTEM STABILIZER - RATE FEEDBACK 562 12.6.6 EXCITATION SYSTEM STABILIZER - PID CONTROLLER 564 12.7 AGC INCLUDING EXCITATION SYSTEM 566 12.8 INTRODUCTORY MODERN CONTROL APPLICATION 567 12.8.1 POLE-PLACEMENT DESIGN 569 12.8.2 OPTIMAL CONTROL DESIGN 576 APPENDIXES: A.

INTRODUCTION TO MATLAB 586 A.l INSTALLING THE TEXT TOOLBOX 587 A.2 RUNNING MATLAB 587 A.3 VARIABLES 589 A.4 OUTPUT FORMAT 590 A.5 CHARACTER STRING 592 A.6 VECTOR OPERATIONS 593 A.7 ELEMENTARY MATRIX OPERATIONS 596 A.7.1 UTILITY MATRICES 1 599 A.7.2 EIGENVALUES 599 A.8 COMPLEX NUMBERS 599 A.9 POLYNOMIAL ROOTS AND CHARACTERISTIC POLYNOMIAL 601 A.9.1 PRODUCT AND DIVISION OF POLYNOMIALS 603 A.9.2 POLYNOMIAL CURVE FITTING 603 A.9.3 POLYNOMIAL EVALUATION 604 A.9.4 PARTIAL-FRACTION EXPANSION 604 A.10 GRAPHICS 605 A.l1 GRAPHICS HARD COPY 607 A.12 THREE-DIMENSIONAL PLOTS 613 A.13 HANDLE GRAPHICS 614 A.14 LOOPS AND LOGICAL STATEMENTS 614 A.15 SOLUTION OF DIFFERENTIAL EQUATIONS 615 A.16 NONLINEAR SYSTEMS 620 A.17 SIMULATION DIAGRAM 622 A.18 INTRODUCTION TO SIMULINK 623 A.18.1 SIMULATION PARAMETERS AND SOLVER 625 A.18.2 THE SIMULATION PARAMETERS DIALOG BOX 626 A.18.3 BLOCK DIAGRAM CONSTRUCTION 626 A.18.4 USING THE TO WORKSPACE BLOCK 633 A.18.5 LINEAR STATE-SPACE MODEL FROM SIMULINK DIAGRAM 634 A.18.6 SUBSYSTEMS AND MASKING 636 B REVIEW OF FEEDBACK CONTROL SYSTEMS 638 B.l THE CONTROL PROBLEM 638 B.2 STABILITY 639 B.2.1 THE ROUTH-HURWITZ STABILITY CRITERION 640 B.2.2 ROOT-LOCUS METHOD 641 B.3 STEADY-STATE ERROR 642 B.4 STEP RESPONSE 644 B.5 ROOT-LOCUS DESIGN 645 B.5.1 GAIN FACTOR COMPENSATION OR P CONTROLLER 646 B.5.2 PHASE-LEAD DESIGN 647 B.5.3 PHASE-LAG DESIGN 648 B.5.4 PID DESIGN 649 B.5.5 PD CONTROLLER 649 B.5.6 PI CONTROLLER 650 B.5.7 PID CONTROLLER 650 B.6 FREQUENCY RESPONSE 657 B.6.1 BODE PLOT 657 B.6.2 POLAR PLOT 658 B.6.3 RELATIVE STABILITY 658 B.6.4 GAIN AND PHASE MARGINS 659 B.6.5 NYQUIST STABILITY CRITERION 660 B.6.6 SIMPLIFIED NYQUIST CRITERION 660 B.6.7 CLOSED-LOOP FREQUENCY RESPONSE 661 B.6.8 FREQUENCY RESPONSE DESIGN 662 C. POWER SYSTEM TOOLBOX 665 BIBLIOGRAPHY 671 ANSWERS TO PROBLEMS 678 INDEX 691.

There are no comments on this title.

to post a comment.


Home | IITHLibrary |RAIITH |Catalog
A service provided by IITHLibrary
© Copyright 2022-2023. IITHLibrary, IIT Hyderabad
web page visitor counter